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The purpose of this paper is to introduce paranorm intuitionistic fuzzy I-
convergent sequence spaces defined by compact operator and study the 
fuzzy topology on the said spaces. We defined more general type of 

paranorm intuitionistic fuzzy I-convergent sequence 𝑆(𝜇,𝜈)
𝐼 = (𝑇)(𝑝) and 

𝑆(0,𝜈)
𝐼 = (𝑇)(𝑝) spaces by using compact operators. Moreover, we established 

some topological properties concerning with those spaces. 
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1. Introduction  

*After the pioneering work of Zadeh (1965), a 
huge number of research papers have appeared on 
fuzzy theory and its applications as well as fuzzy 
analogues of the classical theories. Fuzzy set theory 
is a powerful hand set for modelling uncertainty and 
vagueness in various problems arising in field of 
science and engineering. It has a wide range of 
applications in various fields: population dynamics 
(Barros et al., 2000), chaos control (Fradkov and 
Evans, 2005), computer programming (Giles, 1980), 
nonlinear dynamical system (Hong and Sun, 2006), 
etc. Fuzzy topology is one of the most important and 
useful tools and it proves to be very useful for 
dealing with such situations where the use of 
classical theories breaks down. The concept of 
intuitionistic fuzzy normed space (Saadati and Park, 
2006) and of intuitionistic fuzzy 2-normed space 
(Mursaleen and Lohani, 2009) is the latest 
developments in fuzzy topology. Khan et al. (2014, 
2015, 2017) and Khan and Yasmeen (2016a,b,c) 
studied the intuitionistic fuzzy zweier I-convergent 
sequence spaces defined by paranorm, modulus 
function and Orlicz function. 

The notion of statistical convergence is a very 
useful functional tool for studying the convergence 
problems of numerical problems/matrices (double 
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sequences) through the concept of density. The 
notion of I-convergence, which is a generalization of 
statistical convergence (Fast, 1951; Esi and Özdemir, 
2016; Mursaleen and Mohiuddine, 2009a;b;2010; 
Hazarika and Mohiuddine, 2013; Alotaibi et al., 2014; 
Mohiuddine and Lohani, 2009; Mursaleen et al., 
2010) was introduced by Kostyrko et al. (2000) by 
using the idea of I of subsets of the set of natural 
numbers ℕ and further studied in (Nabiev et al., 
2007). Recently, the notion of statistical convergence 
of double sequences x = (𝑥𝑖𝑗) has been defined and 

studied by Edely (2003), and for fuzzy numbers by 
Savas (2004), Mursaleen et al. (2016). Quite recently, 
Das et al. (2008) studied the notion of I and I- 
convergence of double sequences in ℝ. 

We recall some notations and basic definitions 
used in this paper. 

 
Definition 1.1: A binary operation ∗ ∶ [0,1] × [0,1] →
[0,1] is said to be continuous t-norm, if the following 
hold: 
1. ∗  is associative and commutative, 
2. ∗ is continuous, 
3.  𝑥 ∗ 1 = 𝑥 for all 𝑥 ∈ [0,1], 
4.  𝑥 ∗ 𝑦 ≤ 𝑧 ∗  𝑤  whenever 𝑥 ≤ 𝑧 and 𝑦 ≤  𝑤  where 

𝑥, 𝑦, 𝑧 , 𝑤 ∈ [0,1]. 
 

Example 1.1: Define  𝑥 ∗ 𝑦 = 𝑥. 𝑦 where the usual 
multiplication is. Then it can be shown that  ∗  is a 
continuous t-norm. 
 
Definition 1.2: A binary operation ⋄ ∶ [0,1] × [0,1] →
[0,1]  is said to be continuous t-norm, if it satisfies 
the following properties: 
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1. ⋄ is associative and commutative, 
2. ⋄ is continuous, 
3.  𝑥 ⋄ 0 = 𝑥 for all 𝑥 ∈ [0,1], 
4. 𝑥 ⋄ 𝑦 ≤ 𝑧 ⋄ 𝑤 whenever 𝑥 ≤ 𝑧 and 𝑦 ≤ 𝑤 where 

𝑥, 𝑦, 𝑧, 𝑤 ∈ [0,1]. 
 

Example 1.2: 𝑥 ⋄ 𝑦 = min  {𝑥 + 𝑦, 1}  is a continuous 
t-norm. 
 
Definition 1.3:  Let 𝑋 be a non-empty set. A subsets I 
of 𝑋 is said to be an ideal if, 
 
1.  𝐴, 𝐵 ∈  𝐼 ⇒  𝐴 ∪  𝐵  ∈ 𝐼; 
2.  𝐴 ∈  𝐼, 𝐵 ⊆  𝐴 ⇒  𝐵 ∈  𝐼. 

 

The above properties are called additivity and 
hereditary respectively. An Ideal 𝐼  is called non- 
trivial if  𝑋 ≠ 𝐼 . 
 
Definition.1.4: Let 𝑋 be a non-empty set. Then ℱ ⊆
 2𝑥 is said to be filter on 𝑋 if, 
 
1. ∅ ∉  ℱ, 
2. 𝐴, 𝐵 ∈   ℱ ⇒ 𝐴 ∩  𝐵 ∈  ℱ, 
3. 𝐴 ∈  ℱ and 𝐴 ⊆  𝐵 ⇒ B ∈ ℱ.  

 

To each ideal I, a filter ℱ is associated defined as 
ℱ(𝐼) = {𝑀 ⊆ 𝑋 ∶  𝑀𝑐 ∈  𝐼}. 
 
Definition 1.5: Let 𝐼 ⊆  2ℕ  be a non-trivial ideal 
in  ℕ . Then a sequence 𝑥 = (𝑥𝑘) is said to be I-
convergent to a number 𝐿 ∈ ℝ if, for every 𝜖 > 0, the 
set 
 
{𝑘 ∈ ℕ: |𝑥𝑘 − 𝐿|} ∈ 𝐼. 
 

Definition 1.6: Let 𝐼 ⊆  2ℕ  be a non-trivial ideal 
in  ℕ . Then a sequence 𝑥 = (𝑥𝑘) is said to be I-
Cauchy if, for each 𝜖 > 0, there exists a number 𝑁 =
𝑁(𝜖) such that the set {𝑘 ∈ ℕ: |𝑥𝐾 − 𝑥𝑁|≥ 𝜖} ∈ 𝐼. 

 
Definition 1.7: Let 𝑋 be a non-empty set. A fuzzy set 
𝐴 in 𝑋 is characterized by its membership function: 
  
𝜇𝐴 : 𝐴 → [0,1] 
 

and 𝜇𝐴 (𝑥) is called as the degree of membership of 
element 𝑥 in fuzzy set A for each 𝑥 in 𝑋. 

 
Definition 1.8: The five-tuple (𝑋, 𝜇, 𝜈,∗,⋄) is said to 
be an intuitionistic fuzzy normed space(IFNS) if 𝑋 is 
a vector space, ∗ is a continuous t-norm, ⋄ is a 
continuous t-conorm and 𝜇, 𝜈 are fuzzy sets on 𝑋 ×
(0, ∞) satisfying the following conditions for every 
𝑥, 𝑦 ∈ 𝑋 and 𝑠, 𝑡 > 0 (Khan et al., 2015):  
 
a) 𝜇(𝑥, 𝑡) +  𝜈(𝑥, 𝑡) ≤ 1, 
b) 𝜇(𝑥, 𝑡) > 0, 
c) 𝜇(𝑥, 𝑡) = 1  if and only if  𝑥 = 0 

d) 𝜇(𝛼𝑥, 𝑡) = 𝜇 (𝑥,
𝑡

|𝛼|
)  for each 𝛼 ≠ 0 

e) 𝜇(𝑥, 𝑡) ∗ 𝜇(𝑦, 𝑠)  ≤ 𝜇(𝑥 + 𝑦, 𝑡 + 𝑠),  
f) 𝜇(𝑥, 𝑡) ∗ (0, ∞) → [0,1] is continuous, 
g) lim

𝑡→∞
𝜇(𝑥, 𝑡) = 1 and lim

𝑡→0
𝜇(𝑥, 𝑡) = 0, 

h) 𝜈(𝑥, 𝑡) ≤ 1, 

i) 𝜈(𝑥, 𝑡) = 0 if and only if 𝑥 = 0, 

j) 𝜈(𝛼𝑥, 𝑡) = 𝜈 (𝑥,
𝑡

|𝛼|
)  for each 𝛼 ≠ 0, 

k) 𝜈(𝑥, 𝑡) ⋄ 𝜈(𝑦, 𝑠)  ≥ 𝜈(𝑥 + 𝑦, 𝑡 + 𝑠), 
l) 𝜈(𝑥, . ): (0, ∞) → [0,1] is continuous 
m) lim

𝑡→∞
𝜈(𝑥, 𝑡) = 0 and lim

𝑡→0
𝜈(𝑥, 𝑡) = 1. 

 
In this case (𝜇, 𝜈) is called an intuitionistic fuzzy 
norm. 
 
Definition 1.9: Let (𝑋, 𝜇, 𝜈,∗,⋄) be IFNS then the 
sequence  𝑥 = (𝑥𝑘) is said to be convergent to 
continuous  𝐿 ∈ 𝑋 with respect to the intuitionistic 
fuzzy norm (𝜇, 𝜈) if, for every 𝜖 > 0 and  𝑡 > 0, there 
exists 𝑘0 ∈ ℕ such that 𝜇(𝑥𝑘 − 𝐿, 𝑡) > 1 − 𝜖 and 𝜈 
(𝑥𝑘 − 𝐿, 𝑡) < 𝜖 for all 𝑘 ≥ 𝑘0. In this case we write 
(𝜇, 𝜈) − lim𝑥 = 𝐿. 

 
Definition 1.10: Let (𝑋, 𝜇, 𝜈,∗,⋄) be IFNS then the 
sequence  𝑥 = (𝑥𝑘) is said to be Cauchy sequence 
with respect to the intuitionistic fuzzy norm (𝜇, 𝜈) if, 
for every 𝜖 > 0 and 𝑡 > 0, there exists 𝑘0 ∈ ℕ such 
that 𝜇(𝑥𝑘 − 𝑥𝑙 , 𝑡) > 1 − 𝜖 and  𝜈 (𝑥𝑘 − 𝑥𝑙 , 𝑡) < 𝜖 for 
all 𝑘, 𝑙 ≥ 𝑘0.  

 
Definition 1.11: Let 𝐾 be the subset of natural 
numbers  ℕ. Then the asymptotic density of 𝐾, 

denoted by 𝛿(𝐾), is defined as 𝛿(𝐾) = lim
𝑛

1

𝑛
|{𝑘 ≤

𝑛: 𝑘 ∈ 𝐾}|, where the vertical bars denote the 
cardinality of the enclosed set. 
 
Definition 1.12: A number sequence  𝑥 = (𝑥𝑘) is 
said to be statistically convergent to a number  ℓ if, 
for each  𝜖 > 0 , the set 𝐾(𝜖) = {𝑘 ≤ 𝑛: |𝑥𝑘 − ℓ|} ≥ 𝜖 

has asymptotic density zero, i.e. lim
𝑛

1

𝑛
|{𝑘 ≤

𝑛: |𝑥𝑘 − ℓ|} ≥ 𝜖}| = 0, In this case we write 𝑠𝑡 −
lim 𝑥 = ℓ. 
 
Definition 1.13: A number sequence  𝑥 = (𝑥𝑘) is 
said to be statistically Cauchy convergent if, for every 
𝜖 > 0, there exists a number  𝑁 = 𝑁(𝜖) such that 
  

lim
𝑛

1

𝑛
|{ 𝑗 ≤ 𝑛: |𝑥𝑗 − 𝑥𝑁|} ≥ 𝜖}| = 0. 

 
The concepts of statistical convergence and 

statistical Cauchy for double sequences in 
intuitionistic fuzzy normed spaces have been studied 
by Mursaleen et al. (2010). 

 
Definition 1.14: Let 𝐼 ⊆  2ℕ  be a non-trivial ideal 
and (𝑋, 𝜇, 𝜈,∗,⋄) be an IFNS then the sequence  𝑥 =
(𝑥𝑘) of elements of X is said to be I-convergent to 𝐿 ∈
𝑋 with respect to the intuitionistic fuzzy norm (𝜇, 𝜈) 
if for every 𝜖 > 0 and 𝑡 > 0, the set 
{𝑘 ∈ ℕ ∶ 𝜇(𝑥𝑘 − 𝐿, 𝑡) ≥ 1 − 𝜖  or  𝜈(𝑥𝑘 − 𝐿, 𝑡) ≤ 𝜖} ∈ 𝐼.  
 

In this case L is called the I-limit of the sequence (𝑥𝑘) 
with respect to the intuitionistic fuzzy norm (𝜇, 𝜈) 
and 𝐼(𝜇,𝜈) − lim(𝑥𝑘) = 𝐿. 

 
Definition 1.15: Let X and Y be two normed linear 
spaces and 𝑇: 𝐷(𝑇) → 𝑌 be a linear operator, where 



Khan et al/ International Journal of Advanced and Applied Sciences, 4(5) 2017, Pages: 138-143 

140 
 

𝐷 ⊂ 𝑋  Then the operator T is said to be bounded, if 
there exists a positive real k such that (Khan et al., 
2015) 
 
‖𝑇𝑥‖ ≤ 𝑘‖𝑥‖, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝐷(𝑇). 
 

The set of all bounded linear operators B(X; Y) 
(Kreyszig, 1989) is a normed linear space normed by 

 
‖𝑇‖ = sup

𝑥∈𝑋,‖𝑥‖=1
‖𝑇𝑥‖ 

 

and B(X, Y) is a Banach space if Y is a Banach space. 
 

Definition 1.16: Let X and Y be two normed linear 
spaces. An operator 𝑇 ∶ 𝑋 → 𝑌 is said to be a compact 
linear operator (or completely continuous linear 
operator) if (Khan et al., 2015), 
1. T is linear, 
2. T maps every bounded sequence (𝑥𝑘) in X on to a 

sequence (𝑇(𝑥𝑘)) in Y which has a convergent 
subsequence.  
 

The set of all compact linear operators 𝐶(𝑋, 𝑌) is a 
closed subspace of 𝐵(𝑋, 𝑌) and 𝐶(𝑋, 𝑌)  is Banach 
space, if Y is a Banach space. 
 
Definition 1.17: Let X is a vector space. A function 
𝑝 ∶ 𝑋 → ℝ is said to be a paranorm if 𝑝 satisfies the 
following conditions: 
 
1. 𝑝(𝑥) ≥ 0, for all 𝑥 ∈ 𝑋, 
2. 𝑝(−𝑥) = 𝑝(𝑥), for all 𝑥 ∈ 𝑋, 
3. 𝑝(𝑥 + 𝑦) ≤  𝑝(𝑥) + 𝑝(𝑦), for all 𝑥, 𝑦 ∈ 𝑋, 
4. if (𝜆𝑛) is a sequence of scalars with  (𝜆𝑛) → (𝜆) as (𝑛 →

∞) and (𝑥𝑛) is a sequence 
 

of vectors such that  𝑝 (𝑥𝑛 − 𝑥) → 0 as (𝑛 →
∞) then  𝑝(𝜆𝑛𝑥𝑛 −  𝜆𝑥) → 0 as 𝑛 → ∞. 

 
In this article we introduce the following 

sequence spaces: 
 

𝑆(𝜇,𝜈)
𝐼 (𝑇)(𝑝) = {(𝑥𝑘) ∈ ℓ∞: {𝑘 ∈ ℕ: 𝜇[𝑇(𝑥𝑘 − 𝐿, 𝑡)]𝑝𝑘 ≤ 1 −

𝜖 0r 𝜈[𝑇(𝑥𝑘) − 𝐿, 𝑡]𝑝𝑘 ≥ 𝜖} ∈ 𝐼},  
𝑆0(𝜇,𝜈)

𝐼 (𝑇)(𝑝) = {(𝑥𝑘) ∈ ℓ∞: {𝑘 ∈ ℕ: 𝜇[𝑇(𝑥𝑘), 𝑡]𝑝𝑘 ≤ 1 −

𝜖 0r 𝜈[𝑇(𝑥𝑘), 𝑡]𝑝𝑘 ≥ 𝜖} ∈ 𝐼}.  

 
We also define an open ball with center x and 

radius r with respect to t as follows: 

𝐵𝑋(𝑟, 𝑡)(𝑇)(𝑝) = {(𝑦𝑘) ∈

ℓ∞: {
𝑘 ∈ ℕ: 𝜇[𝑇(𝑥𝑘) − 𝑇(𝑦𝑘), 𝑡]𝑝𝑘 ≤ 1 − 𝜖 

0r 𝜈[𝑇(𝑥𝑘) − 𝑇(𝑦𝑘), 𝑡]𝑝𝑘 ≥ 𝜖
} ∈ 𝐼}.  

2. Main results 

Theorem 2.1:   𝑆(𝜇,𝜈)
𝐼 (𝑇)(𝑝) and 𝑆0(𝜇,𝜈)

𝐼 (𝑇)(𝑝) are 

vector spaces. 
 
Proof: We shall prove the result for    𝑆(𝜇,𝜈)

𝐼 (𝑇)(𝑝). 

The proof for the other space will follow similarly. 
 

Let  𝑥 = (𝑥𝑘) , 𝑦 = (𝑦𝑘) ∈  𝑆(𝜇,𝜈)
𝐼 (𝑇)(𝑝) and 𝛼, 𝛽 be 

scalars. Then for given 𝜖 > 0, we have 
 

𝐴1 =  {𝑘 ∈ ℕ ∶ 𝜇 [𝑇(𝑥𝑘) − 𝐿1,
𝑡

2|𝛼|
]

𝑝𝑘

≤ 1 − 𝜖 𝑜𝑟 𝜈 [𝑇(𝑥𝑘) −

 𝐿1,
𝑡

2|𝛼|
]

𝑝𝑘

≥ 𝜖 } ∈ 𝐼 ,  

𝐴2 =  {𝑘 ∈ ℕ ∶ 𝜇 [𝑇(𝑦𝑘) − 𝐿2,
𝑡

2|𝛽|
]

𝑝𝑘

≤ 1 − 𝜖 𝑜𝑟 𝜈 [𝑇(𝑦𝑘) −

 𝐿2,
𝑡

2|𝛽|
]

𝑝𝑘

≥ 𝜖 } ∈ 𝐼.  

𝐴1
𝑐 =  {𝑘 ∈ ℕ ∶ 𝜇 [𝑇(𝑥𝑘) − 𝐿1,

𝑡

2|𝛼|
]

𝑝𝑘

> 1 − 𝜖 𝑜𝑟 𝜈 [𝑇(𝑥𝑘) −

 𝐿1,
𝑡

2|𝛼|
]

𝑝𝑘

< 𝜖 } ∈ ℱ(𝐼)  

   𝐴2
𝑐 =  {𝑘 ∈ ℕ ∶ 𝜇 [𝑇(𝑦𝑘) −  𝐿2,

𝑡

2|𝛽|
]

𝑝𝑘

> 1 −

𝜖 𝑜𝑟 𝜈 [𝑇(𝑦𝑘) − 𝐿2,
𝑡

2|𝛽|
]

𝑝𝑘

< 𝜖 } ∈ ℱ(𝐼).  

 
Define the set 𝐴3 =  𝐴1 ∪ 𝐴2, so that 𝐴3 ∈ 𝐼. It 
follows that 𝐴3

𝑐  is a non-empty set in ℱ(𝐼). We shall 
show that for each (𝑥𝑘) , (𝑦𝑘) ∈  𝑆(𝜇,𝜈)

𝐼 (𝑇)(𝑝), 

 

𝐴3
𝑐 ⊂ {

𝜇[𝛼𝑇(𝑥𝑘) + 𝛽𝑇(𝑦𝑘) − (𝛼𝐿1 + 𝛽𝐿2), 𝑡]𝑝𝑘 > 1 − 𝜖  
or 

𝜈[𝛼𝑇(𝑥𝑘) + 𝛽𝑇(𝑦𝑘) − (𝛼𝐿1 + 𝛽𝐿2), 𝑡]𝑝𝑘  < ϵ
}. 

 

Let 𝑚 ∈  𝐴3
𝑐 , then we have, 

 

𝜇 [𝑇(𝑥𝑚) − 𝐿1,
𝑡

2|𝛼|
]

𝑝𝑘

> 1 − 𝜖 or 𝜈 [𝑇(𝑥𝑚) −  𝐿1,
𝑡

2|𝛼|
]

𝑝𝑘

<

𝜖   
 

and 
 

𝜇 [𝑇(𝑦𝑚) − 𝐿2,
𝑡

2|𝛽|
]

𝑝𝑘

> 1 − 𝜖 𝑜𝑟 𝜈 [𝑇(𝑦𝑚) −

 𝐿2,
𝑡

2|𝛽|
]

𝑝𝑘

< 𝜖.  

 
We have 
 

𝜇[(𝛼𝑇(𝑥𝑚) − 𝛽𝑇(𝑦𝑚)) − (𝛼 𝐿1 + 𝛽𝐿2)]𝑝𝑘 ≥ 𝜇 [𝛼𝑇(𝑥𝑚) −

 𝛼𝐿1,
𝑡

2
]

𝑝𝑘

∗ 𝜇 [𝛽𝑇(𝑥𝑚) −  𝛽𝐿2,
𝑡

2
]

𝑝𝑘

  

=𝜇 [𝑇(𝑥𝑚) −  𝐿1,
𝑡

2|𝛼|
]

𝑝𝑘

∗ 𝜇 [𝑇(𝑥𝑚) − 𝐿2,
𝑡

2|𝛽|
]

𝑝𝑘

  

> (1 − 𝜖) ∗ (1 − 𝜖) = 1 − 𝜖. 
 

and 
 

𝜈[𝛼𝑇(𝑥𝑚) + 𝛽𝑇(𝑦𝑚) − (𝛼𝐿1 + 𝛽𝐿2), 𝑡]𝑝𝑘 ≤ 𝜈 [𝛼𝑇(𝑥𝑚) −

 𝛼𝐿1,
𝑡

2
]

𝑝𝑘

⋄ 𝜈 [𝛽𝑇(𝑥𝑚) −  𝛽𝐿2,
𝑡

2
]

𝑝𝑘

  

= 𝜈 [𝑇(𝑥𝑚) −  𝛼𝐿1,
𝑡

2|𝛼|
]

𝑝𝑘

⋄ 𝜈 [𝑇(𝑥𝑚) −  𝐿2,
𝑡

2|𝛽|
]

𝑝𝑘

  

< 𝜖 ⋄ 𝜖 = 𝜖.  
 

Therefore 
 

𝐴3
𝑐 ⊂

{
𝑘 ∈ ℕ ∶ 𝜇[𝛼𝑇(𝑥𝑘) + 𝛽𝑇(𝑦𝑘) − (𝛼𝐿1 + 𝛽𝐿2), 𝑡]𝑝𝑘 >  1 − 𝜖 

 𝑜𝑟  𝜈 [𝛼𝑇(𝑥𝑘) + 𝛽𝑇(𝑦𝑘) − (𝛼𝐿1 + 𝛽𝐿2), 𝑡]𝑝𝑘  < ϵ 
} =

𝐵(say).  
 

So we have  𝐵𝑐 ⊂ 𝐴3 ∈ 𝐼  which proves  𝑆(𝜇,𝜈)
𝐼 (𝑇)(𝑝) 

is a linear space. 
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Theorem 2.2: Every open ball 𝐵𝑥(𝑟, 𝑡)(𝑇)(𝑝) is an 
open set in  𝑆(𝜇,𝜈)

𝐼 (𝑇)(𝑝). 

 
Proof: Let 𝐵𝑥(𝑟, 𝑡)(𝑇)(𝒫) be an open ball with center 
𝑥 and radius 𝑟 with respect to 𝑡. That is 
 
 𝐵𝑥(𝑟, 𝑡)(𝑇)(𝑝) =

{
 𝑦 = (𝑦𝑘) ∈ ℓ∞: {𝑘 ∈ ℕ: 𝜇[𝑇(𝑥𝑘) − 𝑇(𝑦𝑘), 𝑡]𝑝𝑘  ≤ 1 − 𝑟 

 𝑜𝑟 𝜈[𝑇(𝑥𝑘) − 𝑇(𝑦𝑘), 𝑡]𝑝𝑘 ≥ 𝑟} ∈ 𝐼
}  

 
Let 𝑦 ∈ 𝐵𝑥

𝑐(𝑟, 𝑡)(𝑇)(𝑝). Then 
 
𝜇[𝑇(𝑥𝑘) − 𝑇(𝑦), 𝑡]𝑝𝑘  > 1 − 𝑟 and 𝜈[𝑇(𝑥𝑘) − 𝑇(𝑦𝑘), 𝑡]𝑝𝑘 <
𝑟. 
 
Since 𝜇[𝑇(𝑥𝑘) − 𝑇(𝑦𝑘), 𝑡]𝑝𝑘  > 1 − 𝑟 there exists  𝑡0 ∈
(0,1) such that 𝜇[𝑇(𝑥𝑘) − 𝑇(𝑦𝑘), 𝑡0]𝑝𝑘  > 1 − 𝑟 and 
𝜈[𝑇(𝑥𝑘) − 𝑇(𝑦𝑘), 𝑡0]𝑝𝑘 < 𝑟. Putting  𝑟𝑜 =
𝜇[𝑇(𝑥𝑘) − 𝑇(𝑦𝑘), 𝑡0]𝑝𝑘  , we have 𝑟0 > 1 − 𝑟 there 
exists  𝑠 ∈ (0,1) such that 𝑠 < 𝑟 and hence 𝑟0 > 1 −
𝑠 > 1 − 𝑟. For 𝑟0 > 1 − 𝑠, we have 𝑟1, 𝑟2  ∈ (0,1)  with 
𝑟1, 𝑟2  > 𝑟0 and thus 𝑟0 ∗ 𝑟1  > 1 − 𝑠  and  (1 − 𝑟0) ⋄
(1 − 𝑟0) ≤ 𝑠. Let 𝑟3 = max {𝑟1, 𝑟2} and consider the 
ball 𝐵𝑦

𝑐(1 − 𝑟3, 𝑡 − 𝑡0)(𝑇)(𝑝). We proof that  

 
 𝐵𝑦

𝑐(1 − 𝑟3, 𝑡 − 𝑡0)(𝑇)(𝑝) ⊂ 𝐵𝑥
𝑐(𝑟, 𝑡)(𝑇)(𝑝). 

 

Let 𝑧 = (𝑧𝑘) ∈ 𝐵𝑦
𝑐(1 − 𝑟3, 𝑡 − 𝑡0)(𝑇)(𝑝). Then 

𝜇[𝑇(𝑦𝑘) − 𝑇(𝑧𝑘), 𝑡 − 𝑡0]𝑝𝑘 > 𝑟3 and 𝜈[𝑇(𝑦𝑘) − 𝑇(𝑧𝑘), 𝑡 −
𝑡0]𝑝𝑘 < 1 − 𝑟3.  
 
Thus  
 
𝜇[𝑇(𝑥𝑘) − 𝑇(𝑧𝑘), 𝑡]𝑝𝑘 > 𝜇[𝑇(𝑥𝑘) − 𝑇(𝑦𝑘), 𝑡0]𝑝𝑘 ∗
 𝜇[𝑇(𝑦𝑘) − 𝑇(𝑧𝑘), 𝑡 − 𝑡0]𝑝𝑘   
 ≥ (𝑟0 ∗ 𝑟3) ≥ (𝑟0 ∗ 𝑟1) ≥ (1 − 𝑠) > (1 − 𝑟)  
 

and 
 
𝜈[𝑇(𝑥𝑘) − 𝑇(𝑧𝑘), 𝑡]𝑝𝑘 ≤ 𝜈[𝑇(𝑥𝑘) − 𝑇(𝑦𝑘), 𝑡0]𝑝𝑘 ⋄
𝜈[𝑇(𝑦𝑘) − 𝑇(𝑧𝑘), 𝑡 − 𝑡0]𝑝𝑘   
 ≤ (1 − 𝑟0) ⋄ (1 − 𝑟3) ≤  (1 − 𝑟0) ⋄ (1 − 𝑟2) ≤ 𝑠 < 𝑟.  
 

Thus  𝑧 ∈ 𝐵𝑥
𝑐(𝑟, 𝑡)(𝑇)(𝑝) and hence  

 
𝐵𝑦

𝑐(1 − 𝑟3, 𝑡 − 𝑡0)(𝑇)(𝑝) ⊂  𝐵𝑥
𝑐(𝑟, 𝑡)(𝑇)(𝑝). 

 
Remark 2.1: 𝑆(𝜇,𝜈)

𝐼 (𝑇)(𝑝) is an IFNS. 

Define 𝜏(𝜇,𝜈)
𝐼 (𝑇)(𝑝) = {𝐴 ⊂ 𝑆(𝜇,𝜈)

𝐼 (𝑇)(𝑝): for each 

𝑥 ∈ 𝐴 there exists 𝑡 > 0 and 𝑟 ∈ (0,1). Such that 
𝐵𝑥(𝑟, 𝑡)(𝑇)(𝑝) ⊂ 𝐴}. Then 𝜏(𝜇,𝜈)

𝐼 (𝑇)(𝑝) is a topology 

on 𝑆(𝜇,𝜈)
𝐼 (𝑇)(𝑝). 

 
Theorem 2.3: The topology 𝜏(𝜇,𝜈)

𝐼 (𝑇)(𝑝) on 

𝑆0(𝜇,𝜈)
𝐼 (𝑇)(𝑝) is first countable. 

 

Proof: {𝐵𝑥 (
1

𝑛
,

1

𝑛
) (𝑇)(𝑝): 𝑛 = 1,2,3, … … } is a local 

base at 𝑥. Hence the topology 𝜏(𝜇,𝜈)
𝐼 (𝑇)(𝑝) 

on𝑆0(𝜇,𝜈)
𝐼 (𝑇)(𝑝) is first countable. 

 

Theorem 2.4: 𝑆(𝜇,𝜈)
𝐼 (𝑇)(𝑝) and 𝑆0(𝜇,𝜈)

𝐼 (𝑇)(𝑝) are 

Hausdorrf spaces. 
 
Proof: We prove the result for 𝑆(𝜇,𝜈)

𝐼 (𝑇)(𝑝). The 

proof for 𝑆0(𝜇,𝜈)
𝐼 (𝑇)(𝑝) will follow on similar lines. 

Let  𝑥, 𝑦 ∈ 𝑆(𝜇,𝜈)
𝐼 (𝑇)(𝑝) such that 𝑥 ≠ 𝑦. Then 0 <

𝜇[𝑇(𝑥) − 𝑇(𝑦)]𝑝𝑘 < 1 and 0 < 𝜈[𝑇(𝑥) − 𝑇(𝑦)]𝑝𝑘 < 1. 
Put 𝑟1 = 𝜇[𝑇(𝑥) − 𝑇(𝑦)]𝑝𝑘  , 𝑟2 = 𝜈[𝑇(𝑥) − 𝑇(𝑦), 𝑡]𝑝𝑘  
and 𝑟 = max  {𝑟1, 1 − 𝑟2}. For each 𝑟0 ∈ (𝑟, 1) There 
exists 𝑟3 and 𝑟4 with 𝑟3, 𝑟4 > 𝑟 and hence 𝑟3 ∗ 𝑟4 ≥ 𝑟0 
and (1 − 𝑟3) ⋄ (1 − 𝑟4) ≤ (1 − 𝑟0). Let 𝑟5 =
max{𝑟3 , 1 − 𝑟4}, then we can show the open balls 

𝐵𝑥
𝑐 (1 − 𝑟5,

𝑡

2
) and 𝐵𝑦

𝑐 (1 − 𝑟5,
𝑡

2
) are disjoint. Suppose 

on contrary there exists  
 

𝑧 ∈ 𝐵𝑥
𝑐 (1 − 𝑟5,

𝑡

2
) ∩ 𝐵𝑦

𝑐 (1 − 𝑟5,
𝑡

2
),  

 

then 
 

𝑟1 = 𝜇[𝑇(𝑥) − 𝑇(𝑦), 𝑡]𝑝𝑘 ≥ 𝜇 [𝑇(𝑥) − 𝑇(𝑧),
𝑡

2
]

𝑝𝑘

∗

𝜇 [𝑇(𝑧) − 𝑇(𝑦),
𝑡

2
]

𝑝𝑘

  

> 𝑟5 ∗ 𝑟5   ≥ 𝑟3 ∗ 𝑟3 ≥ 𝑟0 > 𝑟1  
 
and  
 

𝑟2 = 𝜈[𝑇(𝑥) − 𝑇(𝑦), 𝑡]𝑝𝑘 ≤ 𝜈 [𝑇(𝑥) − 𝑇(𝑧),
𝑡

2
]

𝑝𝑘

⋄

𝜈 [𝑇(𝑧) − 𝑇(𝑦),
𝑡

2
]

𝑝𝑘

   

 < (1−𝑟5) ⋄ (1−𝑟5)  ≤ (1 − 𝑟3) ⋄ (1 − 𝑟3)  
≤ (1 − 𝑟0) < 𝑟2  
 

which is contradiction. Hence 𝑆(𝜇,𝜈)
𝐼 (𝑇)(𝑝) is 

Hausdorrf spaces. 
 

Theorem 2.5: 𝑆(𝜇,𝜈)
𝐼 (𝑇)(𝑝) is IFNS and 𝜏(𝜇,𝜈)

𝐼 (𝑇)(𝑝) is 

topology on 𝑆(𝜇,𝜈)
𝐼 (𝑇)(𝑝). Then a sequence 

𝑥 = (𝑥𝑘) ∈ 𝑆(𝜇,𝜈)
𝐼 (𝑇)(𝑝),  𝑥𝑘 → 𝑥  if and only if 

𝜇[𝑇(𝑥𝑘) − 𝑇(𝑥), 𝑡]𝑝𝑘 → 1 and 
 
𝜈[𝑇(𝑥𝑘) − 𝑇(𝑥), 𝑡]𝑝𝑘 → 0 as 𝑘 → ∞.   
 

Proof: Fix 𝑡0 > 0.  suppose 𝑥𝑘 → 𝑥  as ( 𝑘 → ∞).  
Then for 𝑟 ∈ (0,1), there exists 𝑛0 ∈ ℕ  such that 
(𝑥𝑘) ∈ 𝐵𝑥(𝑟, 𝑡)(𝑇)(𝑝) for all 𝑘 ≥ 𝑛0. 
𝐵𝑥(𝑟, 𝑡)(𝑇)(𝑝) = {𝑘 ∈ ℕ: 𝜇[𝑇(𝑥𝑘) − 𝑇(𝑥), 𝑡]𝑝𝑘 ≤ 1 −
𝑟 or 𝜈[𝑇(𝑥𝑘) − 𝑇(𝑥), 𝑡]𝑝𝑘 ≥ 𝑟} ∈ 𝐼,  
 

and so 𝐵𝑥
𝑐(𝑟, 𝑡)(𝑇)(𝑝) ∈ 𝐹(𝐼). Then 1 − 𝜇[𝑇(𝑥𝑘) −

𝑇(𝑥), 𝑡]𝑝𝑘 < 𝑟 and 𝜈[𝑇(𝑥𝑘) − 𝑇(𝑥), 𝑡]𝑝𝑘 < 𝑟.  Hence 
 𝜇[𝑇(𝑥𝑘) − 𝑇(𝑥), 𝑡]𝑝𝑘 → 1 and  𝜈[𝑇(𝑥𝑘) −
𝑇(𝑥), 𝑡]𝑝𝑘 → 0 as 𝑘 → ∞. 

Conversely, if for each 𝑡 > 0 𝜇[𝑇(𝑥𝑘) −
𝑇(𝑥), 𝑡]𝑝𝑘 → 1 and 𝜈[𝑇(𝑥𝑘) − 𝑇(𝑥), 𝑡]𝑝𝑘 → 0 as 𝑘 →
∞, then 𝑟 ∈ (1,0), there exists 𝑛0 ∈ ℕ such that 1 −
𝜇[𝑇(𝑥𝑘) − 𝑇(𝑥), 𝑡]𝑝𝑘 < 𝑟 and 𝜈[𝑇(𝑥𝑘) − 𝑇(𝑥), 𝑡]𝑝𝑘 <
𝑟 for all  𝑘 ≥ 𝑛0. It follows that  𝜇[𝑇(𝑥𝑘) −
𝑇(𝑥), 𝑡]𝑝𝑘 > 1 − 𝑟  and 𝜈[𝑇(𝑥𝑘) − 𝑇(𝑥), 𝑡]𝑝𝑘 < 𝑟 for 
all 𝑘 ≥ 𝑛0. Thus (𝑥𝑘) ∈ 𝐵𝑥

𝑐(𝑟, 𝑡)(𝑇)(𝑝) for all 𝑘 ≥ 𝑛0 
and hence  𝑥𝑘 → 𝑥. 

 



Khan et al/ International Journal of Advanced and Applied Sciences, 4(5) 2017, Pages: 138-143 

142 
 

Theorem 2.6: A Sequence  𝑥 = (𝑥𝑘) ∈ 𝑆(𝜇,𝜈)
𝐼 (𝑇)(𝑝) is 

I-convergent if and only if for every 𝜖 > 0  and 𝑡 > 0 
there exists a number  𝑁 = 𝑁(𝑥, 𝜖, 𝑡) such that  
 

{𝑘 ∈ ℕ: 𝜇 [𝑇 (𝑥𝑘) − 𝐿,
𝑡

2
]

𝑝𝑘

> 1 − 𝜖  or  𝜈 [𝑇 (𝑥𝑘) − 𝐿,
𝑡

2
]

𝑝𝑘

<

𝜖} ∈ ℱ(𝐼)  

 
𝐏𝐫𝐨𝐨𝐟:  Suppose that 𝐼(𝜇,𝜈) − lim𝑥 = 𝐿  and let 𝜖 > 0 

and 𝑡 > 0. For a given 𝜖 > 0, choose 𝑠 > 0 such that 
(1 − 𝜖) ∗ (1 − 𝜖) > 1 − 𝑠 and 𝜖 ⋄ 𝜖 < 𝑠. Then for each 
𝑥 ∈ 𝑆(𝜇,𝜈)

𝐼 (𝑇)(𝑝) 

 

𝐴 = {𝑘 ∈ ℕ: 𝜇 [𝑇 (𝑥𝑘) − 𝐿,
𝑡

2
]

𝑝𝑘

≤ 1 − 𝜖  or  𝜈 [𝑇 (𝑥𝑘) −

𝐿,
𝑡

2
]

𝑝𝑘

≥ 𝜖} ∈ 𝐼  

 

and thus 
 

𝐴𝑐 = {𝑘 ∈ ℕ: 𝜇 [𝑇 (𝑥𝑘) − 𝐿,
𝑡

2
]

𝑝𝑘

> 1 − 𝜖  or  𝜈 [𝑇 (𝑥𝑘) −

𝐿,
𝑡

2
]

𝑝𝑘

< 𝜖} ∈ ℱ(𝐼).  

 
Conversely let us choose 𝑁 ∈ 𝐴. Then 
 

𝜇 [𝑇 (𝑥𝑁) − 𝐿,
𝑡

2
]

𝑝𝑘

> 1 − 𝜖  or  𝜈 [𝑇 (𝑥𝑁) − 𝐿,
𝑡

2
]

𝑝𝑘

< 𝜖.  

 

Now we want to show that there exists number 𝑁 =
𝑁(𝑥, 𝜖, 𝑡) such that  
 
{𝑘 ∈ ℕ: 𝜇 [𝑇 (𝑥𝑘) − 𝑇 (𝑥𝑁), 𝑡]𝑝𝑘 ≤ 1 − 𝑠  or  𝜈[𝑇 (𝑥𝑘) −
𝑇 (𝑥𝑁), 𝑡]𝑝𝑘 ≥ 𝑠} ∈ 𝐼.  
 

For this, define for each 𝑥 ∈ 𝑆(𝜇,𝜈)
𝐼 (𝑇)(𝑝) 

 
B= {𝑘 ∈ ℕ: 𝜇 [𝑇 (𝑥𝑘) − 𝑇 (𝑥𝑁), 𝑡]𝑝𝑘 ≤ 1 − 𝑠  or  𝜈[𝑇 (𝑥𝑘) −
𝑇 (𝑥𝑁), 𝑡]𝑝𝑘 ≥ 𝑠}.  
 

Now we have to show that 𝐵 ⊂ 𝐴. Suppose 𝐵 ⊊ 𝐴. 
Then there exists 𝑛 ∈ 𝐵 and 𝑛 ∉ 𝐴. Therefore we 
have, 

 

𝜇 [𝑇 (𝑥𝑛) − 𝑇 (𝑥𝑁), 𝑡]𝑝𝑘 ≤ 1 − 𝑠  and 𝜇 [𝑇 (𝑥𝑛) − 𝐿,
𝑡

2
]

𝑝𝑘

>

1 − 𝜖.  
 

In particular 𝜇 [𝑇 (𝑥𝑁) − 𝐿,
𝑡

2
]

𝑝𝑘
> 1 − 𝜖. Thus, 

1 − 𝑠 ≥ 𝜇 [𝑇 (𝑥𝑛) − 𝑇 (𝑥𝑁), 𝑡]𝑝𝑘 ≥   𝜇 [𝑇 (𝑥𝑛) − 𝐿,
𝑡

2
]

𝑝𝑘

∗

𝜇 [𝑇 (𝑥𝑛) − 𝐿,
𝑡

2
]

𝑝𝑘

  

> (1 − 𝜖) ∗ (1 − 𝜖) > 1 − 𝑠.  
 
Which is not possible. Also we have, 
 

𝜈 [𝑇 (𝑥𝑛) − 𝑇 (𝑥𝑁), 𝑡]𝑝𝑘 ≥ 𝑠  and 𝜈 [𝑇 (𝑥𝑛) − 𝐿,
𝑡

2
]

𝑝𝑘

< 𝜖.  

 

In particular 𝜈 [𝑇 (𝑥𝑁) − 𝐿,
𝑡

2
]

𝑝𝑘
< 𝜖. Thus, 

 

𝑠 ≤ 𝜇 [𝑇 (𝑥𝑛) − 𝑇 (𝑥𝑁), 𝑡]𝑝𝑘 ≤   𝜈 [𝑇 (𝑥𝑛) − 𝐿,
𝑡

2
]

𝑝𝑘

⋄

 𝜈 [𝑇 (𝑥𝑁) − 𝐿,
𝑡

2
]

𝑝𝑘

  

 < 𝜖 ⋄  𝜖 < 𝑠,  

which is not possible. Hence 𝐵 ⊂ 𝐴. 𝐴 ∈ 𝐼 implies 𝐵 ∈
𝐼. 

3. Conclusion 

Fuzzy set theory is a powerful hand set for 
modelling uncertainty and vagueness in various 
problems arising in field of science and engineering. 
It has a wide range of applications in various fields. 
The concept of intuitionistic fuzzy normed space and 
of intuitionistic fuzzy 2-normed space is the latest 
developments in fuzzy topology. In the present 
paper we studied a more general type of paranorm 
intuitionistic fuzzy I-convergent sequence spaces 
defined by compact operator and study the fuzzy 
topology on the said spaces. These results provide 
new tools to deal with the I-convergence in 
intuitionistic fuzzy problems of sequences occurring 
in many branches of science and engineering. 
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